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Abstract—In this paper, we study an automatic hypothesis generation (HG) problem, which refers to the discovery of meaningful
implicit connections between scientific terms, including but not limited to diseases, chemicals, drugs, and genes extracted from
databases of biomedical publications. Most prior studies of this problem focused on the use of static information of terms and largely
ignored the temporal dynamics of scientific term relations. Even when the dynamics were considered in a few recent studies, they
learned the representations for the scientific terms, rather than focusing on the term-pair relations. Since the HG problem is to predict
term-pair connections, it is not enough to know with whom the terms are connected, it is more important to know how the connections
have been formed (in a dynamic process). We formulate this HG problem as a future connectivity prediction in a dynamic attributed
graph. The key is to capture the temporal evolution of node-pair (term-pair) relations. We propose an inductive edge (node-pair)
embedding method named T-PAIR, utilizing both the graphical structure and node attribute to encode the temporal node-pair
relationship. We demonstrate the efficiency of the proposed model on three real-world datasets, which are three graphs constructed
from Pubmed papers published until 2019 in Neurology, Immunotherapy, and Virology, respectively. Evaluations were conducted on
predicting future term-pair relations between millions of seen terms (in the transductive setting), as well as on the relations involving
unseen terms (in the inductive setting). Experiment results and case study analyses show the effectiveness of the proposed model.
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1 INTRODUCTION

In the sciences, we are now uniquely privileged to sit side by side
with the giants on whose shoulders we stand – Gerald Holton.

The road to scientific discoveries has traditionally involved
scientific expertise and ideas coalescing to form hypotheses,
which are then checked for validity (e.g., as shown in [1]).
The foundation of both expertise and ideas is rooted in
literature, as literature provides the background for new
knowledge and information. Thus, new hypotheses with
minimum uncertainty about undiscovered knowledge can
be made from already published scholarly literature [2], [3].
In this paper, we focus on new hypotheses about whether
two scientific terms/concepts are relevant to each other,
given that there is no direct link between them at the current
knowledge scope. For instance, in 1998 [4], Schizophrenia and
Calcium-Independent Phospholipase A2 independently studied
in [5] (in 1997) and in [6] (in 1995) were connected because
they had oxidative stress as a common factor. Recently, the
number of scientific publications is growing at an exponen-
tial rate, with over a million articles published yearly [7],
[8]. Reading this great number of publications is far beyond
the capability of individual researchers. It thereby makes
the process of reading to extract undiscovered knowledge a
tedious and time-consuming task.
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Towards advanced scientific knowledge discovery, com-
puters have been introduced to play an ever-greater role in
the scientific process with automatic hypothesis generation
(HG) based on machine learning. The study of automated
HG has attracted considerable attention in recent years [9],
[10], [11], [12], [13], [14]. The existing HG methods form
three main groups. The first group [9], [10], [15] are based
on the ABC model for discovery. The ABC model postulates
that if entities {a, b} are related, and {b, c} are related, there
should exist a relationship between {a, c}. For instance, if
diseases X and Y are highly similar in characteristics and
causation, and drug Z is a known cure of disease X . Then,
drug Z has a high chance of being a remedy for disease Z.

The second group covers methods that use a combi-
nation of advanced machine learning strategies to extract
and analyze hidden connections from scientific publications.
These methods include but not limited to association rules
[10], [12], [16], text mining [13], [17], clustering and topic
modeling [2], [18], [19], and others [14], [20], [21]. However,
most of the previous studies fail to capture and utilize the
dynamic evolution of the entity meaning, which can provide
crucial information on inferring the future connectivity of
the entities (e.g., medical terms).

To address this limitation, the final group of studies [20],
[21] focuses on incorporating the temporal information of
the terms in the hypothesis generation process. Specifically,
they model the dynamic meaning of the terms and then infer
the term-term relationship by the combination of the term
semantic features. Therefore, the inference performance
highly depends on the quality of the learned term features.
More importantly, it is not enough to know with whom
the terms are connected (focusing on learning the term
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representation), it is essential to know how the connections
have been formed (in a dynamic process). For example, Fish Oils
(FO) was discovered to help treat Raynaud’s Disease (RD) in
1985. In our study in Section 4.4.1, the predicted relevance
score between FO and RD in the evaluation period (1980
- 1989) corresponding the true discovery year (1985) was
much lower by modeling the static term relations (0.12) than
by modeling the temporal relations (0.61), due to the implicit
differentiation on the recent and former relations.

Therefore, we target on learning the temporal dynamics
of scientific term relations, rather than just learning features
for the terms themselves. Furthermore, previous methods
have focused on predicting future connections of known
terms; thus, they are transductive. Hence, they are not able
or too computationally expensive to deal with the situations
where new terms (e.g., new diseases, drugs) are observed
continuously. In practice, new terms continuously appear in
the scientific publication flooding.

Our study is to design a new inductive model, but also
working for the transductive setting, utilizing both the
graphical structure and node features to encode the temporal
node-pair relationship. To model the historical evolution of
term-pair relations, we construct a term relationship graph
G = {V,E}. We then decompose this graph into temporal
graphlet with different node features per graphlet, denoting
the temporal nature of the node attributes.
Definition 1. Temporal graphlet: A temporal graphlet Gt =
{V t, Et, xtv} is a temporal subgraph at time step t, which
consists of nodes V t ⊂ V and Et ⊂ E. The variable xt is the
node attribute of V t.

We construct a temporal sequence1 of graphlets, where
the t-th graphlet Gt = {V t, Et, xtv} is the part of the
graph G = {V,E} observed at an incremental time t. We
then formulate our HG problem as a temporal node-pair
connectivity prediction task, defined as:
Definition 2. Temporal node-pair connectivity prediction

task: At each time step t, we are given an attributed graph
Gt, and a set of node pairs A, each of which pair is composed
of two nodes in V . At time t, part of the node pairs in A have
labels ytl , denoted as Atl , for which we know if one node-pair
is connected at time t+1 (positive, in ytl ), or not connected at
time t+1 (negative, in ytl ). The remaining pairs Atu = At/Atl
are unlabeled. The goal is to infer the change in labels of the
pairs in AT at the last time step T by using the temporal
graphlets until T − 1, G = {G1, G2, ..., GT−1}, and the
corresponding node pairs labels, yl = {y1l , y2l , ..., y

T−1
l }.

About the above-defined problem, we would like to clarify
the following points:

1) The positive pairs inAtl is a subset2 of the node pairs
linked by edges in Et+1. Labeled pairs in At can be
considered as supervising pairs obtained from the
future step t+1, and is used to guide the node-pair
relation learning in Gt. Formulating the problem
in this way is novel and enables to model how the
pairwise relations have been formed in a dynamic process.

1. We focus on insertion-only temporal graphlets since the scientific
concepts (terms/nodes) never disappear over timeline, but continu-
ously appear with new connections made. See Figure 1.

2. It is too expensive to include all |Gt+1| ∗ |Gt+1| pairs.

We present in section 3.1 with more details about
the construction of graph G, and the label set y over
t=1, ..., T .

2) Positive pairs in Atl stays as positive in At+1
l (i.e.,

Atl+ → At+1
l+ ). A negative pair in Atl can become

positive at t+1, or stays negative (i.e.,Atl− → At+1
l± ).

An unlabeled pair can become positive, or negative
at t+1 (i.e., Atu → At+1

l± ). Therefore, at the final time
step T , we infer labels for pairs in ATu and changes
in ATl−.

To address this defined problem, we target on building
an automatic HG model that has the following advanced
unique features:

• The model can capture how the relations of term-
term (node-node) pairs evolve over time and take
advantage of this relation dynamics to infer new
future connections (hypotheses). In other words,
the model is built on a set of temporal graphlets
G = {G1, G2, ..., GT }, and the labeled set of node
pairs, Atl ; 1 ≤ t ≤ T − 1, unlike most existing
solutions that only use GT [11], [14].

• The model should work in both transductive and
inductive setting. The transductive inference is to
predict future connections between known terms
(node pairs in ATu and ATl− where nodes already exist
in V T−1). The inductive inference is to predict future
connections with previously unknown terms (nodes
out of V T−1).

We propose a model named T-PAIR, for addressing the
temporal node-pair connectivity prediction problem. To
capture the time-evolving relation between terms (nodes),
T-PAIR incrementally learns the node-pair embedding at
each time step by using a recurrent neural network struc-
ture. The node-pair connectivity prediction (i.e., HG prob-
lem) can be addressed by classifying the learned node-pair
embeddings. T-PAIR takes comprehensive usage of the set
of temporal graphlets G = {G1, G2, ..., GT } including all its
node attributes, with the sequential supervising information
in Al = {A1

l , A
2
l , ..., A

T−1
l }, for inferring the connectivity of

pairs in ATu and ATl−.
We evaluated T-PAIR on three real-world datasets of

scholarly publications in the PubMed database until 2019
(with detailed graph information and formulation process
in section 3.1.1 and 4.1). The model is trained end-to-end
and shows superior performance on both transductive and
inductive hypotheses generation tasks. Case studies demon-
strate that T-PAIR predicts the positive relationship between
medical terms before they were actually discovered.

The remaining parts of this paper include relate work
discussion in Section 2, the introduction of T-PAIR in
Section 3, the experimental evaluation in Section 4 and
conclusion and future work in Section 5.

2 RELATED WORKS

2.1 Hypothesis Generation
Hypothesis generation aims to extract implicit information
in scholarly documents to infer future connections between
scholarly terms. In recent years, researchers have proposed
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the use of machine learning for hypothesis generation. AR-
ROWSMITH is a system proposed based the ABC model
[9]. To curtail the limitation of the ABC model whose
computational complexity significantly increases w.r.t. the
number of common entities, other methods [10], [12], [16]
proposed the use of semantic relations to augment ABC
processing. Weeber et al. proposed the DAD-system [22],
which applies Natural Language Processing model as a
guide in generating a new hypothesis. Lindsay and Gordon
[23] used lexical statistics, such as word frequency counts,
to discover hidden connections in the medical literature.
Srinivasan et al. [24], [25] used text mining techniques based
on topic profiles, where a topic profile is a set of terms
(single words and phrases) extracted from the documents
relevant to the given topic.

More recently, Spangler et al. [13], [17] proposed to use
text mining to identify entity relationships from medical
texts. Shi et al. [14] used logistic regression to model the
probability that two entities will be connected based on a
given time window. They applied random walk to capture
the structural information of the scholarly graph. Some
other methods [2], [18], [19] proposed the incorporation
of machine learning techniques such as Latent Dirichlet
Allocation (LDA), clustering, and topical phrase mining.
The previously mentioned methods all focused mostly on
static scholarly graphs. However, as noted in [14], scholarly
graphs exhibit a temporal structure. To capture the temporal
information in such graphs, Jha et al. [20] proposed the use
of a temporal matrix factorization framework to model the
co-evolution of terms across knowledge-bases. Xun et al.
[21] modeled the evolving schematics of term embeddings
based on their indexing (MeSH) terms.

We formulate the HG problem in a novel way, as intro-
duced in Definition 2. We focus on modeling the dynamic
relationship between terms, presented in set of temporal
graphlets G = {G1, G2, ..., GT } with the sequential super-
vision in Al = {A1

l , A
2
l , ..., A

T
l }. Also, our model can be

used in both transductive and inductive settings. Hence,
we can model the relationship between newly introduced
terms and other existing terms in the networks.

2.2 Network Embedding
Network embedding has gained considerable momentum in
recent years. We concentrate our discussion on two groups
of related work, edge embedding, and dynamic network
embedding.

We focus on the study of node-pair relation, specifically
representing node-pair relationships as low dimensional
vectors. This problem can be considered as edge embed-
ding, which has a simple solution: joining the embedding of
two nodes linked by one edge [26], [27]. Other sophisticate
models embed node-pairs and their context in the same
space [28], or learn node and edge embedding vectors
jointly [29]. Several knowledge graph embedding methods
[30], [31], [32], [33], [34] proposed to learn embedding for
both (head and tail) node and (relation) edge jointly. These
above-discussed methods all focused on static graphs and
hence, and cannot model the temporal dynamics of node-
pair relationships.

In the study of temporal/dynamic networks, Goyal et al.
[35] used multiple non-linear layers to learn structural pat-
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Fig. 1: An illustration of the set of temporal graphlets
G = {G1, G2, ..., GT } with the sequential supervision in
A = {A1, A2, ..., AT } (T=4 here). As the graph grows with
more nodes and more connections, At is constructed from
the graph Gt+1. One unit at i, j of At is labeled by yi,jt = 1
(a positive relation) if node i and j are connected in Gt+1.
The unit is labeled by yi,jt = −1 (a negative relation) if
node i and j are NOT connected in Gt+1. During training,
since we do not observe the future, the node pairs in AT are
equivalent to those in AT−1. The difference between them is
the changes in the colored units are only observed in testing.
In the training process, Gt and At (t = 1...T ) form training
samples of node pairs with positive or negative labels. When
testing, we aim to predict the unobserved pair relationships
(colored tiles), in AT .

terns of networks at different time steps and then learn the
temporal transition using RNN. Singer et al. [36] proposed
the use of orthogonal transformation to align node embed-
dings at time tk and time to; o = k+ ε, which is then passed
to RNN to capture the final node representation. Zhou et
al. [37] modeled how a triad (a group of three vertices)
develops from an open triad (no connection between two
of the vertices) to a closed triad (all vertices are connected).

However, none of these methods directly model the
temporal dynamics of node-pair relationships as they aim
to capture the dynamic semantics of the nodes. Rahman
et al. [38] considered the node-pair features as an optimal
coding problem and used temporary functions to learn the
temporal patterns. However, the proposed method is non-
scalable for graphs with high density. Our study, in contrast
to previous methods, focuses on directly capturing the
historical evolution of node-pairs (edges) in an attributed
network, while preserving an inductive property. In addi-
tion, our proposed model comprehensively integrates the
different sources of information in the network.

3 METHODOLOGY: T-PAIR
Since our problem is formulated on a temporal attributed
graph, in this section, we first describe the graph construc-
tion. We then present our proposed T-PAIR model.

3.1 Data Preparation
3.1.1 Graph Construction
Given a dataset of scholarly publications (e.g., from
PubMed), we extract and categorize the terms in the doc-
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uments based on predicates extracted from MEDLINE de-
fined on a set of UMLS terms [39]. Each term belongs to
one of three categories, namely: 1) Genes, 2) Chemicals, and
3) Diseases. We then construct a network G = {V,E}, where
V is the set of nodes corresponding to the biomedical terms.
The relationship E represents the mention of two terms in
the same literature. To be specific, an edge in E connects
two nodes if the two corresponding terms are mentioned
together in the same paper3. Although a co-occurrence of
two terms in a paper can have a negative connotation, it
is interesting to find them out. We leave the study of the
type of relevancy between the co-occurrence connections for
future work.

Next, we split the obtained network using a year win-
dow, thereby, obtaining a sequence of temporal graphlets
G = {G1, G2, ..., GT }. As defined in the Introduction
Section 1, this graphlet sequence encapsulate the tempo-
ral evolution of node pair relationships. Since the node
terms belong to three different categories, the graph Gt =
{V t, Et, xt} is, in fact, a dynamic heterogeneous attributed
graph, with incremental set of nodes V t, where V 1 ⊆
V 2... ⊆ V t... ⊆ V T and edges E1 ⊆ E2... ⊆ Et... ⊆ ET .
The node attribute xt is composed of the term (e.g., fish oil,
lung cancer), and the term contexts, which are the aggrega-
tion of sentences encompassing the mention of the terms in
the documents. We use the texts from the publication titles
and abstracts. The node attributes vary per time period due
to the increase in the number of publications.

3.1.2 Supervised Pair Construction
For each time step t, we construct pairs of nodes. The
node pairs are then labeled based on the graph of the next
observed time step. The constructed node pairs are of the
format ai,j =< vi, vj >, consisting of nodes vi and vj . As
shown in Figure 1, the pairs per time step t are labeled based
on the observation made on the graphGt+1 = {V t+1, Et+1}
of the next time window t+1. A node pair ai,j is assigned a
positive class +1 if the connection is observed in graphGt+1

(i.e., ytai,j = +1 ⇐⇒ e(vi, vj) ∈ Et+1) or −1 otherwise.
Since we consider insertion only graphlets sequence, the

graph size of the graphlets grows proportionally with the
increase in time step. Therefore, the use of all possible pairs
for training becomes more computationally expensive and
less feasible in application. In this study for large graphs,
the notion of node pair set is defined as a sampled subset of
all possible node pairs. This sample is drawn uniformly for
each time step t.

3.2 T-PAIR Overview
The architecture of our T-PAIR model is shown in Figure
2. As specified in Problem 1.1, T-PAIR is designed to learn
from the set of temporal graphlets G = {G1, G2, ..., GT },
and the labeled setAl = {A1

l , A
2
l , ..., A

T
l }. Once trained end-

to-end, T-PAIR can be used to infer the labels of pairs inATu .
One pair of nodes ai,j in Atl is used in the training

process of T-PAIR by evaluating its connectivity prediction
score ptai,j . The main steps of calculating the connectivity

3. A mention can have a positive or negative connotation. We con-
sider any kind of mention as a relationship, regardless of positive or
negative.

prediction score are given in Algorithm 1. The testing pro-
cess also uses the same Algorithm 1 (with t=T ), calculating
pTai,j for one pair of nodes inATu . We next explain these steps
with the help of Figure 2.

The connectivity prediction score is calculated in line
6 by ptai,j = fC(h

t
ai,j ; θC), where θC is the classification

network parameter, and the embedding vector htai,j for the
pair ai,j is iteratively updated in lines 1-5. These iterations
of updating htai,j are shown as the recurrent structure shown
in Figure 2 (a), followed by the classifier fC(.; θC).

The recurrent update function hτai,j =
fA(h

τ−1
ai,j , z

τ
vi , z

τ
vj ; θA) in line 4 is shown in Figure 2

(b). It takes input of the embedding vector in previous step
hτ−1
ai,j , the node feature xτv , and the neighboring node feature
xτNr(v). The latter two are processed by an aggregation block
shown in Figure 2(c), producing zτv = fG(x

τ
v , x

τ
Nr(v); θG),

given in line 3. The aggregation network fG(; θG) is
implemented following GraphSAGE, which is one of the
most popular graph neural networks for aggregating node
and its neighbors [40]. We next introduce each of the blocks
in details.

3.3 Neighborhood Aggregation, fG(.; θG)
The aggregator network fG(.; θG), which has GraphSAGE at
its core, aggregates the information of each node in a given
node pair ai,j =< vi, vj > to obtain a terse representation
for them. For each node v in the pair, the aggregation
network takes as input the current node feature xtv as well
as the neighborhood information, which includes the node
features of the sampled node neighbors xtNr(v). At the initial
step of aggregation m = 0, node vector β0

v = xtv . Then, the
representation vectors of neighbors {βm−1

u ,∀u ∈ Nr(v)}
at iteration m − 1 are aggregated into a single vector βmv
at iteration m, by considering the following aggregation
options4:

LSTM Aggregator. This aggregator is based on the
LSTM architecture. LSTM is adapted to aggregate informa-
tion from a random permutation of the node’s neighbors.

Pool Aggregator Each neighbor representation is passed
through a fully connected layer. An element-wise pooling
technique is then used to aggregate the information from its
neighboring set

βmv ← λ({σ(W · βmui
+ b)∀ui ∈ Nr(v)}), (1)

where λ denotes a symmetric vector operator (e.g., max,
mean, and others), and σ is a nonlinear activation function.

Mean Aggregator The mean aggregator aggregates the
neighborhood representation by taking the element-wise
mean of the neighbor representations:

βmv ← σ(W ·MEAN({βm−1
u ,∀u ∈ Nr(v)})), (2)

Inductive GCN Aggregator This is a modified mean
based aggregation:

βmv ← σ(W ·MEAN({βm−1
v } ∪ {βm−1

u ,∀u ∈ Nr(v)})),
(3)

where σ is a nonlinear activation function. This method can
be viewed as an inductive variant to the GCN approach [41].

4. Different techniques exist for the neighborhood aggregation, as
discussed in [40].
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(c)
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} Aggregators
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update
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Recurrent
update
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Recurrent
update
Block

Recurrent
update
Block
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Fig. 2: The proposed T-PAIR model. Block (a) shows the outer view of the model framework. The inner structure of the
recurrent update block and aggregator network are shown in block (b) and (c) respectively.

Algorithm 1: Calculate the future connection score
for term pairs ai,j =< vi, vj >

Input: G = {G1, G2, . . . , GT } with node feature xtv ,
a node pair ai,j =< vi, vj > in Atl , and an
initialized pair embedding vector h0ai,j (e.g.,
by zeros) for the target node pair

Result: ptai,j , the connectivity prediction score for
the node pair ai,j

1 for τ ← 1· · · t do
2 Obtain the current node feature xτv (v = vi, vj) of

both nodes (terms) vi, vj ; as well as xτNr(v)
(v = vi, vj) for the node feature of sampled
neighboring nodes for vi, vj ;

3 Aggregate the neighborhood information of node
v = vi, vj , zτv = fG(x

τ
v , x

τ
Nr(v); θG);

4 Update the embedding vector for the node pair
hτa = fA(h

τ−1
a , zτvi , z

τ
vj ; θA) ;

5 end
6 Return ptai,j = fC(htai,j ; θC)

After the neighborhood aggregation by several layers
(e.g., M layers), the final representation ztv = βMv . The
performance of aggregators often depends on the property
of the applied graph [40]. We evaluate different aggregators
and report the best, which is maxpool in our application
problem.

Neighborhood Definition. Following the principle of
[40], to keep the computational footprint to a minimum,

we work on a fix-size sample set of node neighbors instead
of the full neighborhood nodes. Hence the notion of node
neighbors Nr(v) is defined as a fix-size sample of the full
node neighborhood {u ∈ V : (u, v) ∈ E}. This sample
is drawn uniformly at each iteration, thereby reducing the
time and memory complexity. With the sampling strategy,
the memory and time complexity per node aggregation step
is fixed at O

(∏M
m=1 Sm

)
, where Sm is the neighborhood

sample size at layer m, and M is the maximum layer
considered (i.e., up to M -hop neighbors).

3.4 Pair Embedding Generation, fA(.; θA)

For a given pair ai,j in the recurrent update block, after
the neighborhood aggregation process at time step t, we
obtain the final neighborhood representation of each node
{ztvi , z

t
vj}. The previous pair vector representation ht−1

ai,j is
updated by the recurrent network fA(.; θA) to obtain htai,j
by:

htai,j ← σ(R · ht−1
ai,j + U · (ztvi + ztvj )), (4)

where σ is a nonlinear activation function, and the variables
{R,U} are the weights. The variable htai,j is the pair vector
representation at time step t containing information on
the temporal relationship between nodes vi and vj , ht−1

ai,j

is the output of the previous time step t − 1 (i.e., the
historical information), and {ztvi , z

t
vj} are the aggregated

node neighborhood representation at time t for nodes vi
and vj , respectively.
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3.5 Parameter Learning
In order to train three networks fA(.; θA), fG(.; θG) and
fC(.; θC) in T-PAIR, we use all the labeled training data
in Al = {A1

l , A
2
l , ..., A

T
l }. We have discussed for one pair

ai,j in Atl , how to use Algorithm 1 to update its embed-
ding vector htai,j and its connectivity prediction score ptai,j .
Suppose the label of ai,j =< vi, vj > is ytai,j , then ptai,j is
expected to be close to ytai,j . From the current t to the end T ,
the embedding vector htai,j should evolve to produce ptai,j
similar to ytai,j . Therefore, we define our loss function as

−
T∑
t=1

K∑
k=1

ytai,j · log(p
t
ai,j ) + (1− ytai,j ) · log(1− p

t
ai,j ), (5)

where K = |Atl | is the cardinality of the labeled node pairs,
ytai,j is the true label of pair ai,j =< vi, vj >. In our setting,
ytai,j =1 if vi and vj are not connected at the current step
t but connected at the next time step t + 1. Otherwise
ytai,j = 0. Note that once one pair is labeled as positive,
in all subsequent time steps, this pair always has a positive
label: yτai,j = 1; t ≤ τ ≤ T .

In implementation, during training, AT−1 and AT

are equivalent, since AT−1 is constructed by using GT ,
and there is no GT+1 to construct AT . This setup en-
hances the model stability in the training process, forc-
ing/guaranteeing that the positive pairs at T − 1 remain
positive at T . Note that in Figure 2, AT−1 and AT differ on
the colored tiles that are not observed in training, and to
make label inference in testing.

4 EXPERIMENTAL EVALUATION

We first present the datasets for training and testing, the
experimental setting, and then the quantitative evaluation
results with comparison to a number of baseline methods,
and also the parameter sensitivity analysis. Last, we present
the qualitative study results on several real-world cases
predicted by T-PAIR.

4.1 Dataset
In this project, we study the hypothesis generation problem
on the PubMed data dump (end early 2019). This dataset
contains the title and abstract of ∼ 22 million papers pub-
lished from 1944 - 2019. Among the 200,000 keywords in the
dataset, we select those belonging to: Genes, Chemicals, or
Diseases. The selected keywords are the medical terms that
we are interested in, and will be treated as nodes for graph
construction.

To evaluate the model’s adaptivity in different scien-
tific domains, we construct three graphs from papers in
Neurology, Immunotherapy, and Virology, following the in-
struction in section 3.1.1. The graph statistics are shown in
Table 1. To set up the training and testing data, we split
the graph by a 10-year interval starting from 1949 (i.e.,
{≤ 1949}, {1950 − 1959}, . . . , {2010 − 2019}). We use year
splits of ≤ 2009 ({G1, G2, ..., G7}) for training, and the final
split 2010− 2019 for testing.

For each split Gt, we create a set of labeled term pairs
Atl . As introduced in section 3.1.1, positive pairs Atl+ are
those connected node pairs in graph Gt+1 in the next year

window t+1 . The negative node pairs Atl− are the samples
of node pairs not connected in Gt+1, and the unlabeled
node pairs are then the node pairs with nodes in Gt+1 not
observed in Gt.

For each node v ∈ V t in the training set, we generate
20 negative node pairs Atl−, by pairing each node with the
20 randomly sampled non-node-neighbors in the next year
split (i.e., such that ai,jl− /∈ Et+1). For the testing set, we
generate 40 negative node pairs to simulate the real-world
scenario where the number of negative pairs is larger than
that of positive pairs. The resulting data statistics for each
dataset is given in Table 1.

At each t, for one node (a biomedical term), we extract
its context, which is a concatenation of N sentences where
the term appeared. The term and term contexts are each con-
verted to a 300-dimensional feature vector by applying the
latent semantic analysis (LSI) method on the document-term
matrix features. The missing term and context attributes are
completed with zero vectors. Then, a node has a feature
vector defined as xtv = {xtov ;x

t
cv};∀v ∈ V t, which is a

concatenation of the term xtov and term context xtcv feature
vector. At each time t, the term and context features are
updated with the new increase about them in discoveries,
and publications.

In the inductive evaluation, we need to build feature
vectors for new nodes. For the new node v at time t, its
feature vector xtov and its context feature vector xtcv can be
defined as

xtov =MEAN(xtou∀u ∈ Samp(v)) (6)

xtcv =MEAN(xtcu∀u ∈ Samp(v)),

where Samp(v) is the set of randomly sampled one-hop
neighbors of the new node v at time t.

4.2 Experimental Setup

In all our experiments, we treat the graph to be undirected
and set the hidden dimensions to d = 128. For each neural
network based model, we performed a grid search over
the learning rate lr = {1e−2, 5e−3, 1e−3, 5e−4, 1e−4}, on
the virology dataset from 1944 to 1969. The best parame-
ters per model from the grid search are then used in all
experiments. The T-PAIR models are trained for 3 epochs
with a parameter set (d = 128, lr = 5e−4, and S = 20),
where S is the neighborhood sample size. The GraphSAGE,
Dyntriad, DynAE, and DynAERNN models are trained for
20 epochs with d = 28 and lr = {1e−2, 1e−2, 1e−2, 1e−2}
respectively. The SGCN and nSNE models are trained for
100 and 200 epochs respectively with a parameter set of
(d = 128, lr = 1e−2). The tNodeEmbed models are trained
for 5 epochs with a parameter set of (d = 128, lr = 1e−2).
The experiments were conducted on a Linux system using
Python. We used the Scikit-Learn implementation of Lo-
gistic Regression with default settings for evaluating the
embedding based methods. We implement T-PAIR using
the Tensorflow library. Each GPU based experiment was
conducted on an Nvidia 1080TI GPU.
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TABLE 1: Three graph dataset statistics, with their number of nodes and edges. In testing, we use the term pairs existing in
the split of 2010-2019. The pairs with only terms that have already been seen before 2010 are used in transductive setting.
The pairs including at least one unseen term are used in inductive setting. The pairs including at least one already seen term
are used in the comprehensive setting. The positive pairs are those with confirmed true connections, while the negative
pairs are those without confirmed true connections.

#nodes #edges #Test Pairs (Positive) #Test Pairs (Negative)
Comprehensive Transductive Inductive Comprehensive Transductive Inductive

Neurology 78,594 5,321,668 1,707,748 1,457,845 266,075 2,912,568 1,729,694 1,384,992
Immunotherapy 28,823 919,004 303,516 240,766 67,675 1,075,659 671,529 464,833
Virology 38,956 1,117,118 446,574 342,607 115,179 1,382,856 711,264 829,758

4.3 Quantitative Study

4.3.1 Comparison Methods

To evaluate the performance of our model, we compare
T-PAIR with several state-of-the-art graph-based methods.
We selected the most competitive baselines that are also
publicly available online to avoid unfair evaluations due
to potential faulty implementation. For plain network em-
bedding baselines, we concatenate the output embeddings
with the text (term and context) attributes to obtain the final
node representation. The final embeddings of the nodes in
each pair are then concatenated and fed through a logistic
regression layer (a single layer perceptron) to obtain the
probability of the two nodes getting connected in the next
time window. These baseline methods include:

• GraphSAGE. Since our method is based on Graph-
SAGE [40], we evaluate the different aggregators in
unsupervised GraphSAGE for comparison.

• Features. We use just the original term and context
attributes obtained from LSI.

• DynamicTriad [37]. It utilizes the triadic closure pro-
cess to generate a graph embedding that preserves
structural and evolution patterns of the graph.

• Dynamic AE [35]. This method extends static au-
toencoders for dynamic graphs. It models the inter-
connection of nodes within and across time using
multiple fully connected layers.

• Dynamic AERNN [35]. It uses a fully connected
encoder to initially acquire low dimensional hid-
den representation and feeds this representation into
LSTMs to capture network dynamics.

• SGCN [42]. It extends GCNs to signed networks. For
this method, we mark the observed pairs as positive
edges and the non-observed pairs as negative.

• tNodeEmbed [36]. It leverages the temporal infor-
mation in graphs to create rich node representations.
We modified the original tNodeEmbed for handling
unseen nodes in inductive learning. Given a new
node, we aggregate information from its neighbors
per time window with node embeddings initialized
by the node features.

• Node2Vec [27]. It is one of the most popular plain
network embedding models.

• Edge2Vec [29]. It utilizes edge semantics in its ran-
dom walk node representation method by using an
edge-type transition matrix.

• nSNE [43]. It learns non-linear relationship between
nodes in an edge embedding in signed networks.

• TransR [30], TransH [33], TransE [34]. These
are knowledge graph completion methods, which
are modified for this task by conducting triplet
{head,tail,relationship} classification.

4.3.2 Results in Transductive Setting
In the transductive evaluation, we train the T-PAIR model
on the training split (i.e., dataset corpus ≤ 2009) and evalu-
ate its performance on the test pairs in the test time window
(in our case 2010−2019). These testing nodes have been seen
in the training data. However, their relations are not clear
until 2009. We thus predict their relations in 2010 − 2019
based on their dynamic history before 2009 (being negative
or unlabeled). The performance of our model compared to
other state-of-the-art dynamic and static methods is shown
in Table 2, for three evaluation datasets, respectively.

The results show that T-PAIR outperformed the baseline
methods on all the three datasets. tNodeEmbed, also learns
to capture and utilizes the temporal information in the data,
indicating the importance of the utilization of the temporal
information. However, T-PAIR outperforms tNodeEmbed,
because T-PAIR learns the temporal dynamics of node-
pair relationships while tNodeEmbed captures the dynamic
semantics of the nodes. In addition, The improved results
obtained from the combination of the graph topology-
based embedding (Node2vec) and the text-based embed-
ding (Features) highlight the enriched information property
of multi-source data. The nSNE and SGCN incorporate the
signs given to the edges to create the node representations.
However, the node representation generated by nSNE is
dependent on only the graph node topology, while SGCN
directly incooperates the text-based attribute embedding of
the nodes in learning a node representation. SGCN per-
formance, in comparison to nSNE, additionally shows that
the incorporation of text-based attributes in the network
embedding process enriches the learned representations.

4.3.3 Results in Inductive Setting
The inductive evaluation setting allows the testing pairs
with at least one new unseen node (not available in the
training graphs). The obtained results reported in Table 2
show that T-PAIR can generate embedding for new nodes
to capture the relationship between the new nodes and the

∗. Second best performance
†. For the GraphSAGE and T-PAIR models, we report only the

aggregation variant that gave the best result - maxpool aggregation.
‡. For graph topology based methods, we append the node features

to the learned embedding for classification
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TABLE 2: Evaluation results on the Virology, Immuniotherapy and Neurology datasets respectively; showing the Macro-
F1 score (F1-Macro), F1 Score of observed connections (F1-Positive), and the AUC score. The evaluation is performed in
transductive settings (only nodes/terms observed in training), inductive settings (pairs with at least one new node/term
unobserved in training), and comprehensive settings (with both observed and unobserved nodes/terms in training)

Virology
Transductive Inductive Comprehensive

F1-Positive F1-Macro AUC F1-Positive F1-Macro AUC F1-Positive F1-Macro AUC
Feature 0.56 0.71 0.80 0.47 0.71 0.79 0.55 0.72 0.83
Edge2vec‡ 0.18 0.48 0.69 0.18 0.56 0.74 0.18 0.52 0.73
Node2vec‡ 0.76∗ 0.84∗ 0.93∗ 0.15 0.50 0.54 0.58 0.72 0.82
GraphSAGE† 0.31 0.55 0.70 0.15 0.54 0.80 0.28 0.57 0.78
nSNE‡ 0.27 0.53 0.71 0.20 0.57 0.66 0.26 0.56 0.72
TransH 0.17 0.25 0.27 0.29 0.49 0.57 0.28 0.53 0.53
TransR 0.34 0.31 0.38 0.02 0.19 0.16 0.23 0.38 0.40
TransE 0.28 0.43 0.43 0.27 0.55 0.58 0.26 0.41 0.43
SGCN 0.67 0.74 0.84 0.50∗ 0.72∗ 0.87∗ 0.64 0.76 0.86
Dyntriad‡ 0.59 0.72 0.84 0.50∗ 0.70 0.85 0.57 0.72 0.84
Dynaernn‡ 0.49 0.65 0.80 0.42 0.68 0.76 0.48 0.68 0.82
Dynae‡ 0.57 0.71 0.80 0.45 0.70 0.70 0.55 0.72 0.78
tNodeEmbed 0.73 0.82 0.91 0.49 0.72∗ 0.84 0.69∗ 0.81∗ 0.89∗

T-PAIR† 0.83 0.88 0.95 0.63 0.80 0.88 0.80 0.87 0.94

Immunotherapy
Transductive Inductive Comprehensive

F1-Positive F1-Macro AUC F1-Positive F1-Macro AUC F1-Positive F1-Macro AUC
Feature 0.53 0.70 0.80 0.42 0.68 0.77 0.51 0.70 0.82
Edge2vec‡ 0.14 0.48 0.70 0.04 0.48 0.73 0.12 0.49 0.73
Node2vec‡ 0.75∗ 0.84∗ 0.93∗ 0.23 0.58 0.65 0.67∗ 0.80∗ 0.88
GraphSAGE† 0.26 0.55 0.71 0.19 0.56 0.55 0.25 0.55 0.67
nSNE‡ 0.29 0.56 0.75 0.24 0.58 0.67 0.28 0.58 0.74
TransH 0.16 0.24 0.25 0.36 0.57 0.64 0.37 0.61 0.60
TransR 0.31 0.44 0.45 0.45 0.59 0.65 0.56 0.66 0.66
TransE 0.22 0.38 0.39 0.34 0.58 0.62 0.44 0.65 0.64
SGCN 0.59 0.70 0.81 0.48 0.71 0.86∗ 0.58 0.72 0.84
Dyntriad‡ 0.57 0.72 0.84 0.23 0.32 0.39 0.42 0.59 0.65
Dynaernn‡ 0.41 0.63 0.77 0.36 0.65 0.76 0.40 0.64 0.79
Dynae‡ 0.40 0.63 0.76 0.29 0.61 0.65 0.39 0.64 0.76
tNodeEmbed 0.71 0.82 0.90 0.31 0.63 0.85 0.65 0.80∗ 0.89∗

T-PAIR† 0.81 0.87 0.95 0.46∗ 0.70∗ 0.88 0.76 0.85 0.93

Neurology
Transductive Inductive Comprehensive

F1-Positive F1-Macro AUC F1-Positive F1-Macro AUC F1-Positive F1-Macro AUC
Feature 0.67 0.72 0.82 0.53 0.73 0.81 0.66 0.75 0.85
Edge2vec‡ 0.64 0.67 0.72 0.37 0.64 0.75 0.60 0.69 0.76
Node2vec‡ 0.86∗ 0.87∗ 0.94∗ 0.00 0.46 0.67 0.78 0.84 0.90
GraphSAGE† 0.63 0.66 0.71 0.37 0.64 0.76 0.60 0.69 0.77
nSNE‡ 0.66 0.70 0.75 0.28 0.23 0.34 0.54 0.56 0.54
TransH 0.33 0.30 0.31 0.44 0.58 0.64 0.44 0.47 0.49
TransR 0.23 0.41 0.41 0.24 0.49 0.53 0.42 0.62 0.63
TransE 0.45 0.57 0.58 0.08 0.33 0.31 0.70 0.76 0.76
SGCN 0.74 0.78 0.87 0.51 0.72 0.87 0.71 0.79 0.89
Dyntriad‡ 0.77 0.80 0.88 0.22 0.40 0.49 0.64 0.70 0.78
Dynaernn‡ 0.70 0.73 0.83 0.23 0.37 0.53 0.58 0.64 0.74
Dynae‡ 0.69 0.74 0.82 0.24 0.37 0.37 0.56 0.64 0.65
tNodeEmbed 0.83 0.86 0.93 0.62∗ 0.78∗ 0.87 0.80∗ 0.86∗ 0.92∗

T-PAIR† 0.88 0.89 0.95 0.64 0.79 0.87 0.86 0.89 0.94

already existing nodes in the graph. This capability is made
possible due to the temporal neighborhood aggregation
strategy of T-PAIR. In aggregating the node neighborhood
of the new nodes, the temporal properties of the new node
neighbors are disseminated to the new nodes, and thus
leading to a better node representation for the new nodes,
and then a better relation prediction.

Another observation is that using just the text-based
feature outperformed the methods using a combination of
graph topology embedding and text-based features in an
inductive setting. We postulate that with lack of additional

information on new nodes, methods trained to generate
node representation from graph topology fails to capture
the topological characteristics of the new nodes. This poor
performance is because the new nodes were not available in
the training graph set. Hence, the obtained representation
becomes detrimental to the overall performance in com-
bination with the text-based features. On the other hand,
the text-based features capture the textual information of
the nodes and is thus a useful information source for node
relationship evaluation.

To better understand the performance of the model in
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Fig. 3: AUC score of incremental prediction (per year) made by T-PAIR and three other baselines. The models are
incrementally trained with data before the evaluation time period.

a real-world setting, we also evaluate and report the per-
formance of the models in a comprehensive setting, which
includes pairs with unobserved or observed nodes/terms.
The obtained results show that T-PAIR outperformed the
baseline methods in the three datasets.

4.3.4 Incremental Prediction
The above-presented evaluation results show that T-PAIR
well captures how the connections between terms have been
formed in a dynamic process. Therefore, T-PAIR predicts
more accurately the relations at last time step T in the testing
period than other existing approaches, in both transductive
and inductive setting. A thorough evaluation of T-PAIR’s
capability of handling the dynamically evolving relations is
to evaluate T-PAIR in an incremental training manner. That
is to say, we train T-PAIR on data until t−1 and evaluate its
performance on predicting the testing pairs in t.

As shown in Figure 3, we evaluate T-PAIR’s prediction
performance on testing pairs in 1970 − 1979 by using
all training data until 1969, performance in time interval
1980 − 1989 by training until 1979, and so forth. We com-
pare with several models trained in a similar way, such as
Node2Vec+Feature, SGCN, and tNodeEmbed. This evalua-
tion is conducted in comprehensive setting.

We observe that T-PAIR outperformed the other methods
in all periods. This observation shows that T-PAIR incre-
mentally learns from the temporal network information,
improving the representations learned with each time step.
The static methods gave a different performance at each
year range. This performance shows that these methods
learn on each single graph shots. Hence, the performance is
dependent on the information extracted at each year range.
The tNodeEmbed method overall displayed improved per-
formance at each consecutive year range also. This again
highlights the importance of the consideration of the tem-
poral dynamic relation evolution process.

4.3.5 Pair Embedding Visualization
We further analyze the pair embedding learned by T-PAIR.
We visualize the sampled pairs in the neurology data using
the t-SNE method [44]. For clear visibility, we randomly
sample 800 pairs and visualize the learned embeddings in
Figure 4. We denote with colors the true label in comparison
to the predicted labels. In the visualization, we observe that

Fig. 4: Pair embedding visualization. The blue color denotes
the true positive samples, the red points are true negative, the
green points are false positive, and the yellow points are false
negative.

the true positives (blue) and true negatives (red) are further
apart. In contrast, the false positives (green) and false neg-
atives (yellow) are both closer to the true positives (blue).
We postulate that this is because we can say with higher
certainty based on some research that a term pair should or
should not be connected in the next time window. However,
sometimes the term pair might not be discovered in the next
time window because researchers did not manually discover
the relationship in order to study it, or they discovered the
relationship late in the coming years after the time window.
On the other hand, a relationship can be weak based on
the literature information but was discovered manually by
wet-lab experiments. Hence our aim in this paper is not to
discourage the traditional lab experimental studies but to
mutually connect it with automatic HG for a more enhanced
research experience.

4.3.6 Parameter Sensitivity Study
We analyzed the sensitivity of our method to the model
depth M (M-hop neighborhood). We found that M = 2 was
the optimal setting for a consistent performance boost in
comparison to M = 1 and M ≥ 3. This observation matches
the finding in [40]. Thus we omit such obvious results
and presents the sensitivity of T-PAIR on the neighborhood
sample size. Figure 5a and 5b show results evaluated in
the virology and immunotherapy datasets, respectively. We
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Fig. 5: Parameter sensitivity on the neighborhood sam-
ple size, analyzed on the Neurology and Immunotherapy
datasets.

observe in Figure 5 that despite the increase in the runtime,
there is no significant performance improvement with an
increase of the neighborhood sample size after 20 for both
datasets. Specifically, the model exhibited a diminishing
return property. This analysis was performed using the
maxpool neighborhood aggregation. Other neighborhood ag-
gregation methods exhibited similar properties, albeit with
different run times - the LSTM aggregation has the most
extended runtime.

4.4 Qualitative Study
4.4.1 Five Golden Test Cases
To further analyze the performance of our method, we fol-
low the experimental setup used in previous HG literature
[20], [24], [45]. In these works of literature, the evaluation
is based on replicating the five golden test-cases reported
by the pioneers in this area of study. The gold standard test
cases we evaluate with are :

1) Raynaud’s Disease (RD) and Fish Oils (FO) (discov-
ered in 1985)

2) Migraine Disorder (MIG) and Magnesium (MG)
(discovered in 1988)

3) Arginine (ARG) and Somatomedin C (IGF1) (dis-
covered in 1994)

4) Alzheimer Disease (AD) and Indomethacin (INN)
(discovered in 1989)

5) Schizophrenia (SZ) and Calcium - Independent
Phospholipase A2 (PA2) (discovered in 1997)

We use the neurology data for this analysis. Our eval-
uation setup is as follows: We train the model using the
same setting as described in sections 4.1 and 4.2. We train
the model for each year window and record the predicted

TABLE 3: Evaluation results on the golden test cases

Evaluation test year Discovery
1970 - 1979 1980 - 1989 1990 - 1999 year

RD - FO 0.04 0.61 0.75 1985
MIG - MG 0.58 0.98 0.98 1988
ARG - IGF1 0.00 0.02 0.95 1994
AD - INN 0.74 0.97 0.98 1989
SZ - PA2 0.58 0.85 0.93 1997

TABLE 4: Prediction of the golden test cases, whether the
term pairs in these cases are correctly predicted to be linked
(Y) in their discovered year interval tdiscovered (with the
predicted relevance scores in parentheses).

Prediction for term pairs in the golden test cases
RD - FO MIG - MG ARG - IGF1 AD - INN SZ - PA2

Static N (0.12) Y (0.99) Y (0.98) Y (0.96) N (0.32)
Recent N (0.04 ) Y (0.81) Y (0.97) Y (0.91) N (0.47)
T-PAIR Y (0.61) Y (0.98) Y (0.95) Y (0.97) Y (0.93)

probability of the golden test term pairs to be connected in
the next time window. For instance, in the case of “Ray-
naud’s Disease (RD) and Fish Oils (FO) (1985)”, we give
as input the term pair <Raynaud’s Disease, Fish Oils >. The
predicted probability can be seen as the confidence score
of two terms to be connected in the next time window.
The reproduction of the gold test-cases on a subset of the
PubMed dataset shows that our method performs well even
with limited data. In Table 4, we evaluate the prediction
quality of our T-PAIR model against the performance of
a static model (static) using the complete graph formed
from t = 1 until tdiscovered − 1 (before the year interval
when they were discovered), and a contemporary model
(recent) using only the graph formed in tdiscovered − 1. The
results confirm the usefulness of modeling the temporal link
formulation process and that using only the recently formed
links is often insufficient. The static model predicts No for
the relevance of FO and RD, as the predicted relevance score
is 0.12, less than 0.5. Also, using only the graph formed
from 1970 to 1979, the relevance score is predicted to be 0.04,
which is much lower than the value predicted by T-PAIR of
0.61. The same advantage of T-PAIR is found on prediction
the link between SZ and PA2. For the pairs MIG - MG, ARG
- IGF1, and AD - INN, all the three models predicted Yes
due to their less sensitivity to the temporal link formulation
process. The predicted probability of our proposed model
for the pairs at different years can be seen in Table 3.
Raynaud’s Disease (RD) and Fish Oils (FO). Raynaud
disease is a disorder of the blood vessels, which causes blood
vessels to narrow in response to cold or stress. Swanson [46]
studied and discovered the use of dietary fish oils in treating
patients with Raynaud’s syndrome. In our evaluation dataset,
we note that Raynaud’s disease was first observed in the
1969 subgraph, while Fish oil was first observed in the 1949
subgraph. The result shows the incremental relationship
learning per year window.
Migraine Disorder (MIG) and Magnesium (MG). Migraine
is a common primary headache disorder with multiple
potential triggers. In our records, migraine and magnesium
were first observed in the 1949 subgraph without a link.
Until in [47], their relationship was studied in 1988. The
result shows that right from the start, our model had high
confidence in the relationship between the two terms.
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Arginine (ARG) and Somatomedin C (IGF1). The relation-
ship between a growth-regulating peptide (Somatomedin C)
and an essential amino acid (Arginine) was first analyzed in
[15]. However, Somatomedin C was first observed in 1979,
while Arginine was observed in 1949. The obtained result
shows that with each time window, our model increasingly
learned the relationship between the two terms.
Alzheimer Disease (AD) and Indomethacin (INN). In-
domethacin and Alzheimer were first observed in the 1969 and
1949 publications, respectively. Alzheimer is a progressive
disease that destroys neurological and other body functions.
Indomethacin is a non-steroid anti-inflammatory agent. Our
model predicts their high relevance early in 1970s (with
a score 0.74). In 1989, Indomethacin was studied for the
treatment of Alzheimer.
Schizophrenia (SZ) and Calcium - Independent Phos-
pholipase A2 (PA2). Swanson and Smalheiser [15] postu-
lated the link between a gene (Calcium-Independent Phospho-
lipase A2) and Schizophrenia-a chronic mental disorder that
severely affects a person ability to thinks, feel, and behave.
In our dataset, we observe Schizophrenia and PA2 in the 1949
and 1979 subgraphs, respectively. Our model could predict
the relationship with increasing confidence.

4.4.2 Predicted Cases Analysis
To demonstrate and analyze the predicted cases, we use the
neurology graph ≤ 2009 as the current graph and the graph
of {2010− 2019} as the future graph. First, we sent a list of
top 100 predicted hypotheses to a team of domain experts
to evaluate the interestingness and validity. With respect to
the top 100 generated hypothesis, 74% was confirmed to
be of high quality, 14% was said to be plausible, and 12%
was evaluated to be of low quality. Next, we analyze the
prediction of the T-PAIR model trained on the term-term
connections made before 2010 (i.e., ≤ 2009). We present the
prediction analysis result in Tables 5, 6, and 7.

Our investigation targets on answering the following
questions about the term pairs that are ranked on the top
of the prediction list according to their predicted relevant
scores:

• Do the top ranked term pairs have a connection
indeed in the future graph {2010 − 2019}? (Are the
predictions correct?)

• Do the top ranked term pairs have a short path in
the current graph (≤ 2009)? (Was their relevance
obvious? )

We first extract the top ranked term pairs predicted by
T-PAIR to be connected in the future graph, and then divide
these top term pairs into three groups:
- Group 1 including term pairs whose shortest path dis-
tances in the current graph is more than 3;
- Group 2 including term pairs whose shortest path dis-
tances in the current graph is 3 (three-hop away);
- Group 3 including term pairs whose shortest path dis-
tances in the current graph is 2 (two-hop away).

The results of Group 1 is presented in Table 5. We
observed that the top-6 predicted connections truly exist in
the future graph, although the nodes associated with each

§. DIPDHAQ| O,O’-bis-(3’-iodopropyl)-1,4-dihydroxyanthraquinone

TABLE 5: Top ranked term pairs in Group 1. They are
predicted to be connected in future graph, but were more
than 3 hops away from each other in the current graph
(in the neurology dataset until 2009), i.e., shortest path
distances ≥ 4 from the dataset as of 2009.

Term 1 Term 2 Connected in future graph
Apnea BRAT1 Yes

Diabetes Sel1L Yes
Autoimmune diseases DIPDHAQ§ Yes

Multiple sclerosis miR-572 Yes
Trauma PACAP Yes

Mental retardation DOCK8 Yes

of these connections were far away from each other in the
current graph. This result shows that the T-PAIR model can
learn not just topology-based relationships on graphs but
also the semantic meaning and relationship between the
term textual attributes.

The results of Group 2 is presented in Table 6. We ob-
serve that four of the top-six predicted connections were not
observed in the future graph. We then delve deeper to probe
these unobserved pairs. We were able to find co-occurrence
of the <Macroglobulinemia, HNF-1 > and <Sezary syndrome,
Antibiotic > pairs in the full PubMed dataset occurring
in [52] and [53] respectively; although the pairs were not
connected in the publications used in the construction of
the neurology dataset. However, we could not find any co-
occurrence of the < Tenuifoliside, WAGR syndrome> and <
Interleukin-15, Antero-superior | antero-posterior> pairs in the
full PubMed dataset. On further analysis, we found that
some psychiatric/behavioral and physical problems, includ-
ing depression and inflammations, are some of the features of
WAGR syndrome [48], [49]. Studies in [57] show Tenuifoliside
has anti-apoptotic, neuroprotective, and anti-inflammatory ef-
fects. We also find Osteoarthritis is one linking factor between
Interleukin-15 and Antero regions [50], [51].

Finally, the results of Group 3 is presented in Table
7. The term pairs of these top-ranked connections have
shortest distances of two. Three of the term pairs were
indeed connected in the future graph. Out of the neurology
future graph dataset, we found the co-occurrence of the
terms of the pair <Transient ischemic attack, Phycoerythrin>
in [54]. This confirms the correctness of our prediction,
although the paper [54] is not in the neurology term network
construction. Making a simple search on the internet about
Amphiregulin and Triethyltin brings up several mentions of
the Triethyltin compounds with Amphiregulin. However, the
term pair <Amphiregulin, Triethyltin> was not found in our
downloaded version of the PubMed dataset. Several studies
[55], [56] have shown that a slight change to the Rtl1/Mart1
can result in several undesired effects on the expression of
several genes. However, its relationship with the BBS4 gene
is currently not so glaring. A certain connection between
Rtl1/Mart1 and BBS4 gene is Protein.

¶. Cognitive difficulties | Fatigue, cognitive/psychological or muscu-
loskeletal symptoms
∗∗. Antero-superior insula|Antero-posterior
††. Sca-1 | Spinocerebellar ataxia type 1 | Ataxin-1
‡‡. SGBS | Simpson-golabi-behmel syndrome | developmental over-

growth | Developmental overgrowth of the gpc3-deficient
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TABLE 6: Top ranked term pairs in Group 2. They are predicted to be connected in future graph, but were 3 hops away in
the current graph (in the neurology dataset until 2009), i.e., shortest path distances is 3 in the dataset as of 2009.

Term 1 Term 2 Shortest Path Connected in future graph

NOTCH1 Gcn2

- NOTCH1
- Encephalopathy
- Sleep deprivation
- Gcn2

Yes

Loss of consciousness Ceftaroline

- Loss of consciousness
- Infections
- BAL9141
- Ceftaroline

Yes

Tenuifoliside WAGR syndrome
- WAGR syndrome
- Cognitive difficulties ¶

- Acetylcholine
- Tenuifoliside

No, but clues found in [48], [49]

interleukin-15 Antero∗∗
- interleukin-15
- Cancer
- Dyskinesias
- Antero

No, but clues found in [50], [51]

Macroglobulinemia HNF-1

- Macroglobulinemia
- Injury to cranial nerves
- C-Met
- HNF-1

No, but found in [52]

Sezary syndrome Antibiotic

- Sezary syndrome
- Aermatoses
- Amyloid beta peptide(1-42)
- Antibiotic

No, but found in [53]

TABLE 7: Top ranked term pairs in Group 3. They are predicted to be connected in future graph, but were 2 hops away in
the current graph (in the neurology dataset until 2009), i.e., shortest path distances is 2 in the dataset as of 2009.

Term 1 Term 2 Shortest Path Connected in future graph

Spinocerebellar ataxia type 1†† c-KIT
- Spinocerebellar ataxia type 1
- corticobasal degeneration
- c-KIT

Yes

Triethyltin Amphiregulin
- Triethyltin
- Calcium
- Amphiregulin

No, but with internet evidence

Transient ischemic attack Phycoerythrin
- Transient ischemic attack
- P-selectin
- phycoerythrin

No, but found in [54]

Kawasaki disease Aortitis
- Kawasaki disease
- Livedoid vasculitis
- Aortitis

Yes

BBS4 Rtl1/Mart1
- BBS4
- Amino acid
- RTL1

No, but clues found in [55], [56]

Simpson-golabi-behmel syndrome ‡‡ Tetrasomy
- Simpson-golabi-behmel syndrome
- Cancer
- Tetrasomy

Yes

TABLE 8: Top ranked negative predicted term pairs. They
were not connected in the connected graph (in the neurology
dataset until 2009) and are not predicted to be connected in
future graph.

Term 1 Term 2 Connection in next Graph
PPARalpha Cementoma No
COX 8-3 §§ Optochine No

DMP695 YAP ¶¶ No
Essaven gel Myocardon No

PDM HLH-m5 No
Osajin Thiadiazine No

4.4.3 Analysis of Predicted Negative Cases

We also analyze the predicted negative term pairs to further
understand the model performance. The result is presented
in Table 8. We observed that the top negatively predicted
term pairs were neither connected in the current nor in

§§. COX 8-3| cytochrome c oxidase subunit VIII & Optochine
¶¶. YAP|Yes-associated protein

the future graph. The pairs seem to not be related in
the biomedical point of view. For example, in the pair <
PPARalpha, Cementoma>, PPARalpha is a nuclear receptor
protein that regulates the expression of a number of genes
critical for lipid and lipoprotein metabolism. Cementoma is
an odontogenic tumor of cementum (a specialized calcified
substance covering the root of a tooth). The same way, in
the pair <Osajin, Thiadiazine>, Osajin is the major bioactive
isoflavone present in the fruit of Maclura pomifera. Thiadi-
azine on the other hand, is a synthetic six-membered hetero-
cycle having carbon atoms, sulfur atom, nitrogen atoms and
two double bonds.

4.4.4 COVID-19 case study
To evaluate the applicability of the proposed model on new
diseases, we analyze the model’s performance on COVID-
19 dataset 5. We train on five-year windows split till 2015,
i.e., excluding the new terms in 2016-2020 in the COVID-
19 graph, such as covid-19, sars-cov-2. The trained model

5. obtained in march 2020 from https://www.kaggle.com/allen-
institute-for-ai/CORD-19-research-challenge
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TABLE 9: Top ranked terms predicted to be connected with
term covid-19, trained by graphs until 2015. Verification of
the existence was conducted in the graph in 2020.

Epithelial cells Lung Pressure
Patients Proteinuria Liver
Tobacco Humans Public Health
RNA Test Air
Time Hospitalization Cough
Clustering Morbidity Antibodies
Blood urea Nitrogen Face

then predicts the connectivity between covid-19 as a new
term and other terms, which can also be a new term or a
term existing before 2015. The top predicted terms predicted
to be connected with covid-19 are shown in Table 9, with
the verification in COVID-19 graph in 2020. We notice that
the top terms are generally relevant to covid-19, and we do
observe most of their connections in the graph 2016 - 2020.
For instance, Cough, Fever, SARS, and Hand (washing of
hands) were known to be relevant to covid-19 when writing
this paper, although it was not observed in the training
graph.

5 CONCLUSION AND FUTURE DIRECTION

In this paper, we pose the hypothesis generation problem
as a node-pair relationship prediction task on attributed
temporal graphs and propose T-PAIR - a novel node-pair
representation learning method on temporal graphs. To
utilize the temporal property, at each time step, the model
considers the previous history and the current neighbor-
hood information of both nodes in the pair. The aggregated
information is then used to predict the probability of the
nodes to be connected in the next time step. The quantitative
experiments and analyses show that T-PAIR outperforms
several state-of-the-art methods in both inductive and trans-
ductive settings. The qualitative analyses show also the
effectiveness and usefulness of the proposed method.

An exciting direction for future work is the extension of
the method to directed temporal graphs such that a directed
path can be obtained linking two terms. Another idea would
be to incorporate the relationship type into the model (e.g.,
Drug-Disease type).
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